
PATH-FINDING VIA
FORCE FEEDBACK

REINFORCEMENT

THEO GRUNER
STEFFEN BISSWANGER

LEARNINGFORCE-BASED MACHINE LEARNING
FOR SIX-AXES ROBOT

REINFORCEMENT
LEARNING
FORCE-BASED MACHINE
LEARNING FOR SIX-AXES
ROBOT

BY
STEFFEN BISSWANGER
THEO GRUNER

SUPERVISING TUTOR
BASTIAN WIBRANEK

WINTER TERM 2016/17

DIGITAL DESIGN UNIT
PROF. OLIVER TESSMANN

Steffen Bißwanger | Theo Gruner5DDU | Forschungsmodul WiSe 2016/17 | Machine learning 4

THE TASK

For our research module the ob-
jective was to define and solve
a problem for a robotic arm us-
ing machine learning (ML).
We decided to implement a force-
based ML task for which collecting
feedback should not be too difficult.
Also, a two-dimensional environ-
ment for the problem would be eas-
ier so as not to overcomplicate the
task too much, since the topic was
completely new to us. Immediately
the picture of some kind of laby-
rinth came to our minds. At first, we
thought of some movable compo-
nents as well as of some elastic rub-
ber-band-type obstacles in addition
to the solid obstacles you would ex-
pect to find in an ordinary labyrinth.

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner6 7

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner8 9

The keyword of machine learn-
ing is the term „Big Data“. It de-
scribes the huge amount of un-
structured information given in
today’s world, which is mostly
unused. Contrary to rule-based
systems, it does not rely on com-
plicated algorithms and calcula-
tions, but instead uses the stored
data to identify generalisations in
the data given.
The advantages are very simple
algorithms and low operational
costs.
So machine learning offers a
completely new approach on
solving problems and is often
used when rule-based systems
are too complicated or even im-
possible to execute.
To analyse the unstructured
data, there are many different
approaches which suit different
kinds of problems.
Following, we listed some
commonly used strategies.

Sundar Pichai, Google CEO
Q3 earnings call 2015

“Machine learning
is a core, transformative way
by which we’re re-thinking
everything we’re doing“

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner10 11

An ARTIFICIAL NEURAL NETWORK is
no machine learning approach but helps
implementing the other learning tasks. It is
modelled on the functioning of the human
brain consisting of artificial neurons sym-
bolising functions. They are connected to
many other neurons and therefore build a
working network. Each neuron receives in-
puts from the others, analyses them (e.g.
sums up all inputs) and sends the result
out as an input for another neuron. Artificial
networks can consist of up to one million
neurons sending information between each
other and trying to gather a result out of it.

REINFORCEMENT LEARNING is most-
ly used for a procedure in which the pro-
gramme has to make correct decisions.
Based on the principal of human learning,
the algorithm uses rewards and punish-
ments to learn from his actions. It requires
the introduction of a “state“, that describes
the condition in which the agent is at a cer-
tain moment, and “actions“ describing the
possible transitions to get to another “state“.
The learning task is to calculate a value
for each state as a function of the rewards
given in the current state and of the possi-
ble ones in the future. The optimal behavior,
the policy, is calculated out of the values.

SUPERVISED LEARNING is well suited for
analysing big amounts of already stored and
assigned data. It is key to the learning task
that the data is labeled in the first place, be-
cause the programme’s idea is to map the
data against the values assigned in before.
After evaluating the test data the program
should be able to classify the now unlabeled
and extern data to the attributes. Compa-
nies like “Google“ use supervised learn-
ing e.g. for image recognition. Simply put,
pictures get assigned to certain keywords
typed into the playhead of the browser.

M A C H I N E

L E A R N I N G

APPROACHES

Suiting the best, we decided to implement
REINFORCEMENT LEARNING.

Steffen Bißwanger | Theo Gruner13DDU | Forschungsmodul WiSe 2016/17 | Machine learning 12

TWO POTENTIOMETERS

ROBOT CONNECTOR

THREADED ROD (EXCHANGEABLE)

ELASTIC RUBBER SKIN

LC - DISPLAY

ARDUINO NANO (mini USB)

FORCE SENSOR
The sensor is based on an Arduino Nano
microcontroller. The deflection of the
threaded rod caused by the collision with
an obstacle is sensed by the rotation of two
analog potentiometers. The relative align-
ment of the potentiometers is perpendicular
to allow for a two-dimensional deflection.
The Arduino processes the analog inputs
and sends a value between zero and ten
via USB to a PC, which can be read by a
Python script in Grasshopper. For conveni-
ence and debugging purposes the value is
displayed and visualised on the LCD as well.

Steffen Bißwanger | Theo Gruner15DDU | Forschungsmodul WiSe 2016/17 | Machine learning 14

THE
PROCESS

INITIALISATION
To set up the autonomous learning process some
known parameters have to be defined in Matlab.
This includes the length and width of the labyrinth as
a number of steps, the origin, the final destination,
three vertices for transforming coordinates, read out
from Grasshopper’s real-time monitoring and some
general parameters for the learning algorithm itself.
The force sensor has to be driven to the starting
position by saving its vector into a specific ”.txt”-file.
The Arduino should be reset being in a vertical posi-
tion to define the state of zero deflection.
To launch the process, a specific initialisation function
in Matlab is called, which resets some more values and
generates the first reward- and transition-matrix as
well as the first value function. Based on this function
and the starting point, the first action and correspond-
ing vector gets written into the “.txt“-file (see above).

Once the initialisation has been done, the learning process depends on differ-
ent programmes executing different tasks. This process repeats itself every
time the robot performs a step. Due to computation time and the lag in some
feedbacks, the robot takes around three to four seconds to complete one cycle.

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner16 17

ONE STEP

Steffen Bißwanger | Theo Gruner19DDU | Forschungsmodul WiSe 2016/17 | Machine learning 18

GRASSHOPPER serves
as an interface between the ro-
bot‘s own control software and
Matlab. It simply passes com-
mands from a “.txt“-file to the
robot constraining the robot’s
arm and therefore the sensor’s
rod to a vertical orientation.
Every 500 milliseconds Grass-
hopper processes a real-time
monitoring from the robot and
streams it into a file to make it
accessable for a Python script.

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner20 21

The ARDUINO checks con-
stantly for changes in the values
from the two potentiometers. If
the change exceeds a certain
amount, the Arduino sends an
integer via USB correspond-
ing to the deflection of the rod.
If no obstacle blocks the move-
ment, the value equals zero.

Steffen Bißwanger | Theo Gruner23DDU | Forschungsmodul WiSe 2016/17 | Machine learning 22

A PYTHON SKRIPT, em-
bedded in a dedicated Grass-
hopper file, checks the incoming
values from the serial port the
Arduino writes to. Besides that,
it keeps track of the difference
between the actual position of
the robot and its destination.
They are read from the “.txt-files“
Grasshopper and Matlab write
into.
If the difference gets sufficiently
low, Python recognises this as a
completed movement and writes
a specific feedback into a “.txt“-
file. It contains the two points
between which the movement
was executed as well as the
maximum of the Arduino‘s force
value during the movement.
If the force value exceeds a
certain maximum before the
movement is completed, Python
immediately overwrites the com-
mand file for the robot move-
ment with the point it came from
to prevent it from crashing. Again
a feedback gets written, now
containing a force value of e.g.
ten instead of zero.

Steffen Bißwanger | Theo Gruner25DDU | Forschungsmodul WiSe 2016/17 | Machine learning 24

MATLAB constantly checks
for changes in the file the Python
script writes into. If a new feed-
back has been written, Matlab
launches a sequence of func-
tions.
In a nutshell Matlab edits the
reward-matrix based on the
feedback, evaluates a new val-
ue function and determines the
next action to take, which is to go
one step in a certain direction.
The new field gets transformed
into the coordinates Grasshopper
works with and gets written into
the “.txt“-file for robot commands.

Steffen Bißwanger | Theo Gruner27DDU | Forschungsmodul WiSe 2016/17 | Machine learning 26

HOW DOES THE ROBOT LEARN?

For our project we decided to use Matlab due to its advan-
tages in dealing with matrices and our familiarity with it. The
whole machine learning part of our Project is implemented in
Matlab. Merely gathering the feedback we had to outsource
to a Python script.
The labyrinth task is an optimisation problem, which can be
solved using a “Markov Decision Process“. It is specified by a
reward-matrix and a transition-matrix. The reward-matrix as-
signs to each possible action a certain value (reward). In this
case there are at most four and at least two actions possible
depending on whether the current state is an edge point or not
(up, down, left and right).
The transition-matrix represents the propabilities to get from
one state to another performing a certain action. By using the
“Bellman equation“, a „value function“ can be iterated, which
requires by far the most computation time.
The value function assigns a certain value to each of the
states. The higher the value of a state, the better is the state
to “collect“ a maximum of rewards performing a minimum of
actions. If the reward for leaving the destination state is high
and the reward for leaving states with obstacles is low, the
value function will reveal a solution to our problem if the policy
insists on going to the highest value of the adjacent states.
The problem is that there are no rewards known other than the
one for the final state. Ignoring this lack of information, the robot
tries to go for the best path based on the current reward-matrix.
As soon as the robot collides with an obstacle, the reward-ma-
trix can be refreshed and a better value function can be iterated.

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner28 29

TWEAKING PARAMETERS

To minimize the time the robot needs to reach its
destination, we changed the rewards for bumping
into an obstacle and performing one step. Below
you can see three different plots representing the
values of each state after 15, 100 and 1000 at-
tempts. Each row describes a new approach. With-
out any learning the value function is just a colored
gradient which reveals the shortest path without
any obstacles (similar to the bottom left mapping).

15 100 1000attempts obstacle one step

-0.1 -0.0001

-0.01 -0.0001

-0.001 -0.0001

After 15 attempts the robot crashed into almost
every obstacle and reached his destination al-
ready after 13 attempts. The downside is that it
will not find the correct way if it collects a reward
that is actually not true or the problem changes
over time.

It takes way more time to finish than in the first
example but on the other hand, it is able to pro-
ceed after the robot accidently collected a wrong
reward.
These parameters turned out to suit our problem
best.

In this case it takes too long to get a proper re-
sult, since the robot could not find the right way
after 1000 attempts. Therefore, the punishment
for crashing is too low.

rewardsvalue function

Blue fields represent states with relatively low value compared to the relatively high values of the yellow fields.

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner30 31

POSSIBLE IMPROVEMENTS

Due to the Matlab calculations between
each step, the robot takes quite a long
time to start moving again after finishing
one step. So trying to start the calcula-
tions while moving from one point to an-
other might be a way to accelerate the
progress.
For now, the task of the robot is to learn
the positioning of the obstacles, to avoid
these and to find the right way through
our labyrinth. But it is not able to recog-
nise when it finds the fastest path to its
destination. Therefore, we need an al-
gorithm which checks if the current path
is the fastest one so far and calculates
the probability of a faster path in the fu-
ture.
Introducing new obstacles into our laby-
rinth would first of all need an improve-
ment of the force sensor. For the mo-
ment its feedback is not accurate for
small deflections.
However, the most important task is to
implement an user interface so every-
body is capable of using the programme.

Steffen Bißwanger | Theo Gruner33DDU | Forschungsmodul WiSe 2016/17 | Machine learning 32

get a short IMPRESSION
through our project video

PROSPECTS
As mentioned earlier we had some
other obstacles than just solid
blocks in mind to do tests with. Due
to the lack of time were not able
to realise it. Nevertheless, test-
ing some of those seemingly more
complex labyrinths could reveal
unexpected advantages or show
the limits of our approach on this
task.
The Arduino does already pro-
vide a usable feedback with five
increments. Turning a few blocks
around to make them movable
and implementing a correspond-
ing reward change would be pos-
sible without too much effort.

DDU | Forschungsmodul WiSe 2016/17 | Machine learning Steffen Bißwanger | Theo Gruner34 35

REFERENCE

Reinforcement Learning: A Tutorial, 1997
Mance E. Harmon, Stephanie S. Harmon
http://www.cs.toronto.edu/~zemel/documents/411/rltutorial.pdf (13/02/17 9 a.m.)

Introduction to Reinforcement Learning with Function Approximation, 2015
Rich Sutton
https://www.youtube.com/watch?v=ggqnxyjaKe4 (13/02/17 9 a.m.)
http://incompleteideas.net/sutton/Talks/Talks.html#RLtutorial (13/02/17 9 a.m.)

Markov Decision Process (MDP) Toolbox for Matlab, 1999
Kevin Murphy
https://www.cs.ubc.ca/~murphyk/Software/MDP/mdp.html
(13/02/17 9 a.m.)

Artificial Intelligence: Foundations of Computational Agents, 2010
David L. Poole and Alan K. Mackworth
http://artint.info/html/ArtInt_227.html (13/02/17 9 a.m.)

The Markov Decision Problem, Value Iteration and Policy Iteration, 2003
Cyrill Stachniss and Wolfgang Burgard
http://ais.informatik.uni-freiburg.de/teaching/ss03/ams/DecisionProblems.pdf
(13/02/17 9 a.m.)

Vorlesungsnotizen zur Veranstaltung „Einführung in das wissenschaftlich-
technische Programmieren“, 2016
Technische Universität Darmstadt, Alf Gerisch

Markov Decision Processes (MDP) Toolbox, 2009 (revision 20/01/2015)
Marie-Josee Cros
https://de.mathworks.com/matlabcentral/fileexchange/25786- markov-deci-
sion-processes--mdp--toolbox
(13/02/17 9 a.m.)

SPECIAL THANKS TO

Prof. Dr.-Ing. Oliver Tessmann
Dipl.-Ing. Bastian Wibranek
Andrea Rossi, M.A.
Dipl.-Ing. Anton Savov
Alexander Stefas, Diplom Media Systems Designer

