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THE TASK

For our research module the ob-
jective was to define and solve 
a problem for a robotic arm us-
ing machine learning (ML).
We decided to implement a force-
based  ML  task for which collecting 
feedback should not be too difficult. 
Also, a two-dimensional environ-
ment for the problem would be eas-
ier so as not to overcomplicate the 
task too much, since the topic was 
completely new to us. Immediately 
the picture of some kind of laby-
rinth came to our minds. At first, we 
thought of some movable compo-
nents as well as of some elastic rub-
ber-band-type obstacles in addition 
to the solid obstacles you would ex-
pect to find in an ordinary labyrinth.
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The keyword of machine learn-
ing is the term „Big Data“. It de-
scribes the huge amount of un-
structured information given in 
today’s world, which is mostly 
unused. Contrary to rule-based 
systems, it does not rely on com-
plicated algorithms and calcula-
tions, but instead uses the stored 
data to identify generalisations in 
the data given.
The advantages are very simple 
algorithms and low operational 
costs.
So machine learning offers a 
completely new approach on 
solving problems and is often 
used when rule-based systems 
are too complicated or even im-
possible to execute.
To analyse the unstructured 
data, there are many different 
approaches which suit different 
kinds of problems.
Following, we listed some 
commonly used strategies.

Sundar Pichai, Google CEO
Q3 earnings call 2015

“Machine learning 
is a core, transformative way 
by which we’re re-thinking 
everything we’re doing“
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An ARTIFICIAL NEURAL NETWORK is 
no machine learning approach but helps 
implementing the other learning tasks. It is 
modelled on the functioning of the human 
brain consisting  of artificial neurons sym-
bolising functions. They are connected to 
many other neurons and therefore build a 
working network. Each neuron receives in-
puts from the others, analyses them (e.g. 
sums up all inputs) and sends the result 
out as an input for another neuron. Artificial 
networks can consist of up to one million 
neurons sending information between each 
other and trying to gather a result out of it.

REINFORCEMENT LEARNING is most-
ly used for a procedure in which the pro-
gramme has to make correct decisions. 
Based on the  principal of human learning, 
the algorithm uses rewards and punish-
ments to learn from his actions. It requires 
the introduction of a “state“, that describes 
the condition in which the agent is at a cer-
tain  moment, and “actions“ describing the 
possible transitions to get to another “state“. 
The learning task is to calculate a value 
for each state as a function of the rewards 
given in the current state and of the possi-
ble ones in the future. The optimal behavior, 
the policy, is calculated out of the values.   

SUPERVISED LEARNING is well suited for 
analysing big amounts of already stored and 
assigned data. It is key to the learning task 
that the data is labeled in the first place, be-
cause the programme’s idea is to map the 
data against the values assigned in before. 
After evaluating the test data the program 
should be able to classify the now unlabeled 
and extern data to the attributes. Compa-
nies like “Google“ use supervised learn-
ing e.g. for image recognition. Simply put, 
pictures get assigned to certain keywords 
typed into the playhead of the browser.

M A C H I N E

L E A R N I N G

APPROACHES

Suiting the best, we decided to implement 
REINFORCEMENT LEARNING.
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TWO POTENTIOMETERS

ROBOT CONNECTOR

THREADED ROD (EXCHANGEABLE)

ELASTIC RUBBER SKIN

LC - DISPLAY

ARDUINO NANO (mini USB)

FORCE SENSOR
The sensor is based on an Arduino Nano 
microcontroller. The deflection of the 
threaded rod caused by the collision with 
an obstacle is sensed by the rotation of two 
analog potentiometers. The relative align-
ment of the potentiometers is perpendicular 
to allow for a two-dimensional deflection. 
The Arduino processes the analog inputs 
and sends a value between zero and ten 
via USB to a PC, which can be read by a 
Python script in Grasshopper. For conveni-
ence and debugging purposes the value is 
displayed and visualised on the LCD as well.
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THE 
PROCESS

INITIALISATION
To set up the autonomous learning process some 
known parameters have to be defined in Matlab. 
This includes the length and width of the labyrinth as 
a number of steps, the origin, the final destination, 
three vertices for transforming coordinates, read out 
from Grasshopper’s real-time monitoring and some 
general parameters for the learning algorithm itself. 
The force sensor has to be driven to the starting 
position by saving its vector into a specific ”.txt”-file. 
The Arduino should be reset being in a vertical posi-
tion to define the state of zero deflection. 
To launch the process, a specific initialisation function 
in Matlab is called, which resets some more values and 
generates the first reward- and transition-matrix as 
well as the first value function. Based on this function 
and the starting point, the first action and correspond-
ing vector gets written into the “.txt“-file (see above). 



Once the initialisation has been done, the learning process depends on differ-
ent programmes executing different tasks. This process repeats itself every 
time the robot performs a step. Due to computation time and the lag in some 
feedbacks, the robot takes around three to four seconds to complete one cycle.
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ONE  STEP
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GRASSHOPPER serves 
as an interface between the ro-
bot‘s own control software and 
Matlab. It simply passes com-
mands from a “.txt“-file to the 
robot constraining the robot’s 
arm  and therefore the sensor’s 
rod to a vertical orientation. 
Every 500 milliseconds Grass-
hopper processes a real-time 
monitoring from the robot and 
streams it into a file to make it 
accessable for a Python script.
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The ARDUINO checks con-
stantly for changes in the values 
from the two potentiometers. If 
the change exceeds a certain 
amount, the Arduino sends an 
integer via USB correspond-
ing to the deflection of the rod. 
If no obstacle blocks the move-
ment, the value equals zero. 
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A PYTHON SKRIPT, em-
bedded in a dedicated Grass-
hopper file, checks the incoming 
values from the serial port the 
Arduino writes to. Besides that, 
it keeps track of the difference 
between the actual position of 
the robot and its destination. 
They are read from the “.txt-files“ 
Grasshopper and Matlab write 
into.
If the difference gets sufficiently 
low, Python recognises this as a 
completed movement and writes 
a specific feedback into a “.txt“-
file. It contains the two points 
between which the movement 
was executed as well as the 
maximum of the Arduino‘s force 
value during the movement. 
If the force value exceeds a 
certain maximum before the 
movement is completed, Python 
immediately overwrites the com-
mand file for the robot move-
ment with the point it came from 
to prevent it from crashing. Again 
a feedback gets written, now 
containing a force value of e.g. 
ten instead of zero.
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MATLAB constantly checks 
for changes in the file the Python 
script writes into. If a new feed-
back has been written, Matlab  
launches a sequence of func-
tions.
In a nutshell Matlab edits the 
reward-matrix based on the 
feedback, evaluates a new val-
ue function and determines the 
next action to take, which is to go 
one step in a certain direction.
The new field gets transformed 
into the coordinates Grasshopper 
works with and gets written into 
the “.txt“-file for robot commands.
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HOW DOES THE ROBOT LEARN?

For our project we decided to use Matlab due to its advan-
tages in dealing with matrices and our familiarity with it. The 
whole machine learning part of our Project is implemented in 
Matlab. Merely gathering the  feedback we had to outsource 
to a Python script.
The labyrinth task is an optimisation problem, which can be 
solved using a “Markov Decision Process“. It is specified by a 
reward-matrix and a transition-matrix. The reward-matrix as-
signs to each possible action a certain value (reward). In this 
case there are at most four and at least two actions possible 
depending on whether the current state is an edge point or not 
(up, down, left and right).
The transition-matrix represents the propabilities to get from 
one state to another performing a certain action. By using the 
“Bellman equation“, a „value function“ can be iterated, which 
requires by far the most computation time.
The value function assigns a certain value to each of the 
states. The higher the value of a state, the better is the state 
to “collect“ a maximum of rewards performing a minimum of 
actions. If the reward for leaving the destination state is high 
and the reward for leaving states with obstacles is low, the 
value function will reveal a solution to our problem if the policy 
insists on going to the highest value of the adjacent states.
The problem is that there are no rewards known other than the 
one for the final state. Ignoring this lack of information, the robot 
tries to go for the best path based on the current reward-matrix. 
As soon as the robot collides with an obstacle, the reward-ma-
trix can be refreshed and a better value function can be iterated. 
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TWEAKING PARAMETERS

To minimize the time the robot needs to reach its 
destination, we changed the rewards for bumping 
into an obstacle and performing one step. Below 
you can see three different plots representing the 
values of each state after 15, 100 and 1000 at-
tempts. Each row describes a new approach. With-
out any learning the value function is just a colored 
gradient which reveals the shortest path without 
any obstacles (similar to the bottom left mapping).

15 100 1000attempts obstacle one step

-0.1 -0.0001

-0.01 -0.0001

-0.001 -0.0001

After 15 attempts the robot crashed into almost 
every obstacle and reached his destination al-
ready after 13 attempts. The downside is that it 
will not find the correct way if it collects a reward 
that is actually not true or the problem changes 
over time.

It takes way more time to finish than in the first 
example but on the other hand, it is able to pro-
ceed after the robot accidently collected a wrong 
reward. 
These parameters turned out to suit our problem 
best.

In this case it takes too long to get a proper re-
sult, since the robot could not find the right way 
after 1000 attempts. Therefore, the punishment 
for crashing is  too low.

rewardsvalue function

Blue fields represent states with relatively low value compared to the relatively high values of the yellow fields.
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POSSIBLE IMPROVEMENTS

Due to the Matlab calculations between 
each step, the robot takes quite a long 
time to start moving again after finishing 
one step. So trying to start the calcula-
tions while moving from one point to an-
other might be a way to accelerate the 
progress. 
For now, the task of the robot is to learn 
the positioning of the obstacles, to avoid 
these and to find the right way through 
our labyrinth. But it is not able to recog-
nise when it finds the fastest path to its 
destination. Therefore,  we need an al-
gorithm which checks if the current path 
is the fastest one so far and calculates 
the probability of a faster path in the fu-
ture.
Introducing new obstacles into our laby-
rinth would first of all need an improve-
ment of the force sensor. For the mo-
ment its feedback is not accurate for 
small deflections.
However, the most important task is to 
implement an user interface so every-
body is capable of using the programme.
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get a short IMPRESSION  
through our project video

PROSPECTS
As mentioned earlier we had some 
other obstacles than just solid 
blocks in mind to do tests with. Due 
to the lack of time were not able 
to realise it. Nevertheless, test-
ing some of those seemingly more 
complex  labyrinths could reveal 
unexpected advantages or show 
the limits of our approach on this 
task. 
The Arduino does already pro-
vide a usable feedback with five 
increments. Turning a few blocks 
around to make them movable 
and implementing a correspond-
ing reward change would be pos-
sible without too much effort.
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